首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5100篇
  免费   151篇
  国内免费   175篇
  2023年   31篇
  2022年   31篇
  2021年   44篇
  2020年   73篇
  2019年   108篇
  2018年   107篇
  2017年   74篇
  2016年   104篇
  2015年   112篇
  2014年   256篇
  2013年   413篇
  2012年   146篇
  2011年   231篇
  2010年   170篇
  2009年   222篇
  2008年   266篇
  2007年   282篇
  2006年   235篇
  2005年   232篇
  2004年   236篇
  2003年   185篇
  2002年   160篇
  2001年   117篇
  2000年   105篇
  1999年   109篇
  1998年   111篇
  1997年   103篇
  1996年   83篇
  1995年   95篇
  1994年   90篇
  1993年   93篇
  1992年   65篇
  1991年   64篇
  1990年   50篇
  1989年   43篇
  1988年   59篇
  1987年   55篇
  1986年   38篇
  1985年   58篇
  1984年   44篇
  1983年   42篇
  1982年   70篇
  1981年   44篇
  1980年   37篇
  1979年   32篇
  1978年   13篇
  1977年   22篇
  1976年   14篇
  1975年   14篇
  1973年   13篇
排序方式: 共有5426条查询结果,搜索用时 31 毫秒
991.
Reactive oxygen species (ROS) are activators of cell signaling and modify cellular molecules, including DNA. 8-Oxo-7,8-dihydroguanine (8-oxoG) is one of the prominent lesions in oxidatively damaged DNA, whose accumulation is causally linked to various diseases and aging processes, whereas its etiological relevance is unclear. 8-OxoG is repaired by the 8-oxoguanine DNA glycosylase-1 (OGG1)-initiated DNA base excision repair (BER) pathway. OGG1 binds free 8-oxoG and this complex functions as an activator of Ras family GTPases. Here we examined whether OGG1-initiated BER is associated with the activation of Rho GTPase and mediates changes in the cytoskeleton. To test this possibility, we induced OGG1-initiated BER in cultured cells and mouse lungs and used molecular approaches such as active Rho pull-down assays, siRNA ablation of gene expression, immune blotting, and microscopic imaging. We found that OGG1 physically interacts with Rho GTPase and, in the presence of 8-oxoG base, increases Rho–GTP levels in cultured cells and lungs, which mediates α-smooth muscle actin (α-SMA) polymerization into stress fibers and increases the level of α-SMA in insoluble cellular/tissue fractions. These changes were absent in cells lacking OGG1. These unexpected data and those showing that 8-oxoG repair is a lifetime process suggest that, via Rho GTPase, OGG1 could be involved in the cytoskeletal changes and organ remodeling observed in various chronic diseases.  相似文献   
992.
Ent‐kaurenoic acid oxidase (KAO), a class of cytochrome P450 monooxygenases of the subfamily CYP88A, catalyzes the conversion of ent‐kaurenoic acid (KA) to gibberellin (GA) GA12, the precursor of all GAs, thereby playing an important role in determining GA concentration in plants. Past work has demonstrated the importance of KAO activity for growth in various plant species. In Arabidopsis, this enzyme is encoded by two genes designated KAO1 and KAO2. In this study, we used various approaches to determine the physiological roles of KAO1 and KAO2 throughout plant development. Analysis of gene expression pattern reveals that both genes are mainly expressed in germinating seeds and young developing organs, thus suggesting functional redundancy. Consistent with this, kao1 and kao2 single mutants are indistinguishable from wild‐type plants. By contrast, the kao1 kao2 double mutant exhibits typical non‐germinating GA‐dwarf phenotypes, similar to those observed in the severely GA‐deficient ga1‐3 mutant. Phenotypic characterization and quantitative analysis of endogenous GA contents of single and double kao mutants further confirm an overlapping role of KAO1 and KAO2 throughout Arabidopsis development.  相似文献   
993.
The cbb3 cytochrome c oxidases are distant members of the superfamily of heme copper oxidases. These terminal oxidases couple O2 reduction with proton transport across the plasma membrane and, as a part of the respiratory chain, contribute to the generation of an electrochemical proton gradient. Compared with other structurally characterized members of the heme copper oxidases, the recently determined cbb3 oxidase structure at 3.2 Å resolution revealed significant differences in the electron supply system, the proton conducting pathways and the coupling of O2 reduction to proton translocation. In this paper, we present a detailed report on the key steps for structure determination. Improvement of the protein quality was achieved by optimization of the number of lipids attached to the protein as well as the separation of two cbb3 oxidase isoenzymes. The exchange of n‐dodecyl‐β‐d ‐maltoside for a precisely defined mixture of two α‐maltosides and decanoylsucrose as well as the choice of the crystallization method had a most profound impact on crystal quality. This report highlights problems frequently encountered in membrane protein crystallization and offers meaningful approaches to improve crystal quality.  相似文献   
994.

Background

Owing to recent discoveries of many hydrogen sulfide-mediated physiological processes, sulfide biology is in the focus of scientific research. However, the promiscuous chemical properties of sulfide pose complications for biological studies, which led to accumulation of controversial observations in the literature.

Scope of review

We intend to provide an overview of fundamental thermodynamic and kinetic features of sulfide redox- and coordination-chemical reactions and protonation equilibria in relation to its biological functions. In light of these chemical properties we review the strengths and limitations of the most commonly used sulfide detection methods and recently developed fluorescent probes. We also give a personal perspective on blood and tissue sulfide measurements based on proposed biomolecule–sulfide interactions and point out important chemical aspects of handling sulfide reagent solutions.

Major conclusions

The diverse chemistries of sulfide detection methods resulted in orders of magnitude differences in measured physiological sulfide levels. Investigations that were aimed to dissect the underlying molecular reasons responsible for these controversies made the important recognition that there are large sulfide reserves in biological systems. These sulfide pools are tightly regulated in a dynamic manner and they are likely to play a major role in regulation of endogenous-sulfide-mediated biological functions and avoiding toxic side effects.

General significance

Working with sulfide is challenging, because it requires considerable amounts of chemical knowledge to adequately handle reagent sulfide solutions and interpret biological observations. Therefore, we propose that a rigorous chemical approach could aid the reconciliation of the increasing number of controversies in sulfide biology. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn.  相似文献   
995.
The family Trigonalyidae is considered to be one of the most basal lineages in the suborder Apocrita of Hymenoptera. Here, we determine the first complete mitochondrial genome of the Trigonalyidae, from the species Taeniogonalos taihorina (Bischoff, 1914). This mitochondrial genome is 15,927 bp long, with a high A + T-content of 84.60%. It contains all of the 37 typical animal mitochondrial genes and an A + T-rich region. The orders and directions of all genes are different from those of previously reported hymenopteran mitochondrial genomes. Eight tRNA genes, three protein-coding genes and the A + T-rich region were rearranged, with the dominant gene rearrangement events being translocation and local inversion. The arrangements of three tRNA clusters, trnYtrnMtrnItrnQ, trnWtrnL2trnC, and trnHtrnAtrnRtrnNtrnStrnEtrnF, and the position of the cox1 gene, are novel to the Hymenoptera, even the insects. Six long intergenic spacers are present in the genome. The secondary structures of the RNA genes are normal, except for trnS2, in which the D-stem pairing is absent.  相似文献   
996.
To characterize aphid mitochondrial genome (mitogenome) features, we sequenced the complete mitogenome of the Russian wheat aphid, Diuraphis noxia. The 15,784-bp mitogenome with a high A + T content (84.76%) and strong C skew (− 0.26) was arranged in the same gene order as that of the ancestral insect. Unlike typical insect mitogenomes, D. noxia possessed a large tandem repeat region (644 bp) located between trnE and trnF. Sequencing partial mitogenome of the cotton aphid (Aphis gossypii) further confirmed the presence of the large repeat region in aphids, but with different repeat length and copy number. Another motif (58 bp) tandemly repeated 2.3 times in the control region of D. noxia. All repeat units in D. noxia could be folded into stem-loop secondary structures, which could further promote an increase in copy numbers. Characterization of the D. noxia mitogenome revealed distinct mitogenome architectures, thus advancing our understanding of insect mitogenomic diversities and evolution.  相似文献   
997.
Members of subclass Copepoda are abundant, diverse, and—as a result of their variety of ecological roles in marine and freshwater environments—important, but their phylogenetic interrelationships are unclear. Recent studies of arthropods have used gene arrangements in the mitochondrial (mt) genome to infer phylogenies, but for copepods, only seven complete mt genomes have been published. These data revealed several within-order and few among-order similarities. To increase the data available for comparisons, we sequenced the complete mt genome (13,831 base pairs) of Amphiascoides atopus and 10,649 base pairs of the mt genome of Schizopera knabeni (both in the family Miraciidae of the order Harpacticoida). Comparison of our data to those for Tigriopus japonicus (family Harpacticidae, order Harpacticoida) revealed similarities in gene arrangement among these three species that were consistent with those found within and among families of other copepod orders. Comparison of the mt genomes of our species with those known from other copepod orders revealed the arrangement of mt genes of our Harpacticoida species to be more similar to that of Sinergasilus polycolpus (order Poecilostomatoida) than to that of T. japonicus. The similarities between S. polycolpus and our species are the first to be noted across the boundaries of copepod orders and support the possibility that mt-gene arrangement might be used to infer copepod phylogenies. We also found that our two species had extremely truncated transfer RNAs and that gene overlaps occurred much more frequently than has been reported for other copepod mt genomes.  相似文献   
998.
An assessment of the DNA barcodes of Indian freshwater fishes   总被引:1,自引:0,他引:1  
Freshwater fishes in India are poorly known and plagued by many unresolved cryptic species complexes that masks some latent and endemic species. Limitations in traditional taxonomy have resulted in this crypticism. Hence, molecular approaches like DNA barcoding, are needed to diagnose these latent species. We have analyzed 1383 barcode sequences of 175 Indian freshwater fish species available in the databases, of which 172 sequences of 70 species were generated. The congeneric and conspecific genetic divergences were calculated using Kimura's 2 parameter distance model followed by the construction of a Neighbor Joining tree using the MEGA 5.1. DNA barcoding principle at its first hand approach, led to the straightforward identification of 82% of the studied species with 2.9% (S.E = 0.2) divergence between the nearest congeners. However, after validating some cases of synonymy and mislabeled sequences, 5% more species were found to be valid. Sequences submitted to the database under different names were found to represent single species. On the other hand, some sequences of the species like Barilius barna, Barilius bendelisis and Labeo bata were submitted to the database under a single name but were found to represent either some unexplored species or latent species. Overall, 87% of the available Indian freshwater fish barcodes were diagnosed as true species in parity with the existing checklist and can act as reference barcode for the particular taxa. For the remaining 13% (21 species) the correct species name was difficult to assign as they depicted some erroneous identification and cryptic species complex. Thus, these barcodes will need further assay and inclusion of barcodes of more specimens from same and sister species.  相似文献   
999.
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号